Activity - Based Costing

System
Presented by
Asst. Prof. Karrar Alkhaldy

Learning objectives

After studying this chapter, you should be able to:
1 - Identify disadvantages of traditional costing systems.
2 - Explain the relationship between activities, resources, and cost drivers.
3 - Explain the logic of activity based costing system.
4 - Describe how activities are identified.
5 - Identify the implementing steps of activity based costing.
6 - Compute product cost using activity based costing.

The
 Concept:
 Activity-Based Costing

Direct Costs

Tracing

Allocation

Cost objects

Prod. Depts. Support Depts.

Step 1

Step 2

Traditional Costing Systems

1 - Direct labor 2 - Direct materials
 are easy to trace to products.

cannot be traced easily

3 - MOH cost must be assigned with estimates

Example: Consider the cost of a restaurant bill for four friends. Each orders separate entrees, desserts, and drinks. The restaurant bill is as follows:

	A	B	C	D	Total	Average
	Entree	ID 2,000	ID 6,000	ID 3,500	ID 2,500	ID 14,000

What is the average cost per lunch ?

Undercosting and Overcosting Example

ID $21,000 \div 4=$ ID 5,250

The average can lead to undercosting or overcosting of products:

Product undercosting: a product consumes a high level of resources but is allocated low costs per unit (B).

Product overcosting: a product consumes a low level of resources but is allocated high costs per unit (A).

Mechanical service
 Electrical service
 Body
 Paint repairs service

Auto repair and maintenance workshop

Provides 4 services:
1- Mechanical services
2 - Electrical services
3 - Repair of vehicle body services
4 - Paint services

3 Vehicles repaired during March, 2018:

* The first: mechanical and electrical services.
* The second: paint services. The third: mechanical, electrical, repair of body vehicles, and paint services.
$>$ During March, indirect costs for the workshop were ID 300,000.
$>$ The workshop uses the direct labor as allocation base.
$>$ Normal work capacity is 200 DLH for March.
$>$ Direct labor hours used to repairs
> the three vehicles were 20, 10, and 30 DLH respectively.

How ID 300,000 indirect costs can be allocated to the three vehicles?

Solution:

1-Compute the allocation rate:
Allocation rate $=$ ID $300,000 \div 200$ DLH
= ID 1,500 per DLH
Indirect costs allocated to each vehicle:
First $=$ ID 1,500 $\times 20$ DLH $=$ ID 30,000
Second = ID 1,500 $\times 10$ DLH $=$ ID 15,000
Third $=$ ID 1,500 $\times 30$ DLH $=$ ID 45,000

ABC Definition:

Activity based costing: is a costing system that assigns resource costs to cost objects such as products, services, or customers based on activities performed for the cost objects.

1 - Costs of resources are assigned to activities based on the resource consumption drivers.

2 - costs of activities are assigned to cost objects based on activity consumption drivers.

Basic Terms

1 - Activity: is an event, task, or unit of work with a specified purpose.

Example:

- Designing products - Setting up machines
- Operating machines - Distributing products - Quality inspection - Purchase orders
- Materials handling.

2 - Resource: is an economic element needed or consumed in performing activities: Salaries and supplies.

3 - Activity Cost Pool: is group of indirect cost allocated to a distinct type of activity.

4 - Cost Driver: any factor that has a direct causeeffect relationship with the resources consumed.

In ABC cost drivers are used to assign activity cost pools to products or services.

Cost Allocation

Traditional Costing Systems

ABC System

One allocation base: DLH, MH
Using many cost drivers as allocation bases: one cost driver for each
activity

$\mathbb{A B C}$ allocates the indirect costs by two stages:

Steps of Conputing Product Costs using Activity besed Costing

Seven-steps:

Step 1: Identify the products that are the chosen cost objects.
Step 2: Identify the direct costs of the products.
Step 3: Select the activities and cost-allocation bases to use for allocating indirect costs to the product.

Step 4: Identify the indirect costs associated with each cost-allocation base.

Step 5: Compute the rate per unit of each cost-allocation

 base.Step 6: Compute the indirect costs allocated to the products.

Step 7: Compute the total cost of the products by adding all direct and indirect costs assigned to the products

Overview of Activity-Based Costing System

Functions

Activities

Allocation

 base
Cost objects

Advantages:

1 - ABC provides more accurate product costs.
2 - ABC improves the indirect costs control.
3 - ABC leads to better decisions such as pricing decisions and keep or drop decisions, and

Example

A company produces two types of watches: hand and mural. The following data is provided:

Hand watch
Units produced
Direct materials
Direct labor
Indirect costs

Mural watch
15,000
ID 675,000
ID 195,000
ID 2,112,000

Data to allocate the indirect costs are:

Activity	Allocation base	Indirect costs
Design	parts-square meter	ID 450,000
Machines setup	setup-hours	ID 300,000
Machines operations	Machine hours	ID 637,500
Shipment setup	shipments	ID 81,000
Distribution	cubic meter delivered	ID 405,000
Administration	Direct labor-hours	ID 238,500
Total		ID 2,112,000

Budgeted quantity of allocation bases is as follows:

	Hand	Mural	Total
No. of parts-square meter	30 meter	70 meter	100 meter
No. of setup	500 hrs	$1,500 \mathrm{hrs}$	$2,000 \mathrm{hrs}$
No. of Machine hours	9,000 hrs	$3,750 \mathrm{hrs}$	12,750
No. of shipments	100 ships	100 ships	200 ships.
No. of cubic meter delivered	$45,000 \mathrm{m3}$	$22,500 \mathrm{m3}$	$67,500 \mathrm{m3}$.
No. of direct labor-hours	$30,000 \mathrm{hrs}$	$9,750 \mathrm{hrs}$.	$39,750 \mathrm{hrs}$.

Selling price: hand watch ID 60 per unit. mural watch of ID 100 per unit.

Required: Compute cost per unit for each product

Solution

1- Calculate the activity rates:
Design = ID 450,000 $\div 100=$ ID 4,500 per m2
M. setup = ID 300,000 $\div 2,000 \mathrm{mh}$. =ID $150 / \mathrm{mh}$
M. Operation = ID 637,500 $\div 12,750 \mathrm{mh}$. $=$ ID $50 / \mathrm{mh}$

Shipment = ID 81,000 $\div \mathbf{2 0 0}$ ships = ID $\mathbf{4 0 5}$ / ship
Distribution $=$ ID 405,000 $\div 67,500 \mathrm{~m} 3=I D 6 / \mathrm{m} 3$
Administration= ID 238,500 $\div 39,750 \mathrm{dlh} .=$ ID $6 / \mathrm{hrs}$

2- Assign indirect costs to activities:

	Hand watch		Mural watch		Total
	No. all. base	Costs	No. all. base	Costs	
Design (ID 4,500)	30 m 2	135,000	70 m 2	315,000	ID 450,000
Setup (ID 150)	$500 \mathrm{hrs}$.	75,000	1,500 hrs.	225,000	ID 300,000
Operating (ID 50)	9,000 hrs.	450,000	3,750 hrs.	187,500	ID 637,500
Shipment (ID 405)	100 ship	40,500	100 ship	40,500	ID 81,000
Distribution (ID 6)	45,000 m3	270,000	22,500 m3	135,000	ID 405,000
Administ. (ID 6)	$30,000 \mathrm{hr}$	180,000	9,750 hrs	58,500	ID 238,500
Total cost allocat.	ID 1,150,500		ID 961,500		ID 2,112,000
\div units produced	60,000 units		15,000 units		
In. cost alloc./ unit	ID 19.17		ID 64.10		

3-Calculate product costs

	Hand watch 60,000		Mural watch 15,000	
	Total	Per unit	Total	Per unit
Direct material	$1,125,000$	18.75	675,000	45.00
Direct labor	600,000	10.00	195,000	13.00
Indirect costs		19.17		64.10

Traditional costing systems

Allocation rate $=$ ID 2,112,000 $\div 75,000$ units
= ID 28.16 per units
Cost allocated to:
Hand watch = ID $28.16 \times 60,000$ units= ID 1,689,600
Mural watch $=$ ID $28.16 \times 15,000$ units= ID 422,400
Total
ID 2,112,000

Calculate product costs

	Hand watch 60,000		Mural watch 15,000	
	Total	Per unit	Total	Per unit
Direct material	$1,125,00$	18.75	675,000	45.00
Direct labor	600,000	10.00	195,000	13.00
Indirect costs	$1,689,600$	28.16	422,400	28.16

Comparison between Traditional and ABC

Indirect costs allocated per unit	H. watch	M. watch
Traditional costs system	ID 28.16	ID 28.16
ABC	ID 19.17	ID 64,10

Cost per unit	H. watch	M. watch
Selling price	ID 60	ID 100
Traditional costs system	ID 56.91	ID 86.16
ABC	ID 47.92	ID 122.10

Thanks For Your Lessening

20-37. The Acton Corporation manufactures electrical meters. For August, there were no beginning inventories of direct materials and no beginning or ending work in process. Acton uses a JIT production system and backflush costing with three trigger points for making entries in the accounting system:

- Purchase of direct materials
- Completion of good finished units of product
- Sale of finished goods

Acton's August standard cost per meter is direct materials, $\$ 24$, and conversion cost, $\$ 18$. Acton has no direct materials variances. The following data apply to August manufacturing:

Direct materials purchased \$540,000
Number of finished units manufactured 19,000
Conversion costs incurred $\$ 425,000$
Number of finished units sold 18,000

Required :

1. Prepare summary journal entries for August (without disposing of under- or overallocated conversion costs). Acton has no direct materials variances.
2. Post the entries in requirement 1 to T-accounts for Materials and In-Process Inventory Control, Finished Goods Control, Conversion Costs Control, Conversion Costs Allocated, and Cost of Goods Sold.

The solution :

1. Purchase of direct materials

Direct Materials Control \$540,000
Accounts Payable Control \$540,000
Conversion costs Control \$425,000
other accounts $\$ 425,000$
2. Completion of good finished units of product

Finished product Control $\$ 798000$
Direct Materials Control \$ 456000
Conversion costs allocated \$342000
$(24 * 19000=\$ 4560000,18 * 19000=\$ 342000)$
$(24+18 * 19000=\$ 798000)$
3. Sale of finished goods

Cost of Goods Sold $\$ 756000$
Finished product Control $\$ 756000$
$(24+18 * 18000=756000)$

Direct Materials Control

Finished product Control		
Beginning balance 0		
Direct Materials Control \$4560000	Cost of goods sold	\$756000
Conversion costs allocated \$\$342000		
	Ending balance	\$ 42000
798000		798000
Cost of	oods sold	
Finished product Control $\$ 756000$		
Underallocated conversion costs \$83000		
839000		839000

The direct labor variances

Labor - العهل

Example $5:-$ compute the Labor variances from the
Page 9:- $\mid=$ Legal अर्al information given below :-

Steal
standard time per unit

Standard rate of wages per hour 6 R.S

Actual production

Actual time taken
الهانجو
Actual wages

- 11

Solution:-
(1) total Labor cost variance $=(A H * A R)-(S H * S R)$

$$
\begin{aligned}
& =(2,000 * 7)-(2,100 * 6) \\
& =14,000-12,600 \\
& =1,400 u
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
\text { Labor Rate variance } & =(A R-5 R) * A H \\
& =(7-6) * 2,000 \\
& =1 * 2,000 \\
& =2,000 u
\end{aligned}
$$

(3) Labor usage/efficiency variance $=(A H-S H) * S R$

$$
\begin{aligned}
& =(2,000-2,100) * 6 \\
& =-100 * 6 \\
& =-600 \mathrm{f}
\end{aligned}
$$

:5 」

$$
\begin{aligned}
& \because-3 \tilde{8} L \text { L } \\
& A R=\frac{14,000}{2,000}=7 \text { Rms per hours }
\end{aligned}
$$

\% =

$$
\begin{aligned}
& S H=700 * 3=2,100 \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stall }
\end{aligned}
$$

Exercise 2: -Materials and manufacturing labor Variances
Data: , ,-Hl costrel ball =Lis
 consider the following data collected for great homes, Inc.:
 actual outputs $*$ standard prices

Required:- compute the price, efficiency, and total variance〕 3 ff- البا
for direct materials and direct manufacturing labor.
Solution:-
(1) Total materials cost variances $=A C-S C$

$$
\begin{aligned}
& =200,000-225,000 \\
& =-25,000 \mathrm{f}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\text { Material price variance } & =(A P-S P) * A Q \\
& =(A P * A Q)-(S P * A Q) \\
& =200,000-214,000 \\
& =-14,000 f
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { Material usag/efficiency variance } & =(A Q-S Q) * S P \\
& =(A Q * S P)-(S Q * S P) \\
& =214,000-225,000 \\
& =-11,000 \mathrm{~F}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\text { Total Labor cost variance } & =A C-S C \\
& =90,000-80,000 \\
& =10,000 \mathrm{u}
\end{aligned}
$$

(5)

$$
\begin{aligned}
\text { Labor Rate variance } & =(A R-S R) * A H \\
& =(A R * A H)-(S R * A H) \\
& =90,000-86,000 \\
& =4,000 u
\end{aligned}
$$

6) Labor usage efficiency variance $=(A H-5 H) * 5 R$

$$
\begin{aligned}
& =(A H * S R)-(S H * S R) \\
& =86,000-80,000 \\
& =6,000 u
\end{aligned}
$$

Standard Costing
 Computing and Analysis of direct labor Variances

Presented by Assist.Prof. Karrar Alkhaldy 2020-2021

Labour Variances

- Total direct Labour Cost Variance= (Actual hours AH* * Actual rate per hour AR) - (Standard hours for the actual output SH* Standard rate per hour SR)
- or Actual direct labor cost AC- Standard direct labor cost SC,
- Direct Labour Rate Variance =(Actual rate per hour ARStandard rate per hour SR)* Actual hours AH
- Direct Labour Usage/Efficiency Variance =(Actual hours AH-Standard hours for the actual output SH)* Standard rate per hour $S \boldsymbol{R}$

Total Direct Labour Cost

 Variance
Direct Labour

Usage/Efficiency

Direct Labour variance

Practice Problem

A firm gives you the following data:
Standard time per unit 2.5 hours
Actual hours worked 2,000 hours
Standard rate of pay Rs. 2 per hour
25% of the actual hours has been lost as idle time.
Actual output 1,000 units
Actual wages Rs. 4,500
Calculate all labour variances.

Solution

- Total direct Labour Cost Variance= (Actual hours AH* Actual rate per hour AR) (Standard hours for the actual output SH* Standard rate per hour SR)
- = \$ 4500 - ((2.5 \boldsymbol{h} *1000 units)*Rs. 2 per hour
- = \$ 4500- (2500 h*Rs. 2 per hour)
- = \$4500-\$5000=\$500 F. variance
- Direct Labour Rate Variance =(Actual rate per hour $\boldsymbol{A R}$ - Standard rate per hour SR)* Actual hours AH
- = (Rs. 2.25 per hour- h^{*} Rs. 2 per hour)2000 h
- = \$ 500 UNF. Variance
- Direct Labour Usage/Efficiency Variance $=($ Actual hours $\boldsymbol{A H}$ - Standard hours for the actual output SH)* Standard rate per hour SR
- =(2000 h- 2500 h) Rs. 2 per hour
- = \$1000 F. variance

Practice Problems

Compute the Labour variances from the information given below:
Standard time $\quad 3$ hours per unit
Standard rate of wages Rs. 6 per hour
Actual production 700 units
Actual time taken 2000 hours
Actual Wages Rs. 14000
Idle time
50 hours

- Total direct Labour Cost Variance= (Actual hours $\boldsymbol{A H}^{*}$ Actual rate per hour AR) - (Standard hours for the actual output SH* Standard rate per hour $\boldsymbol{S R}$)
- = \$14000-((3 h *700 units)*Rs. 6 per hour
- = \$14000- (2100 h*Rs. 6 per hour)
- = \$14000-\$12600= \$1400 UNF. variance
- Direct Labour Usage/Efficiency Variance =(Actual rate per hour ARStandard rate per hour SR)* Actual hours AH
- = (Rs. 7 per hour- h^{*} Rs. 6 per hour) 2000 h
- = \$ 2000 UNF. Variance
- Direct Labour Rate Variance =(Actual hours AH-Standard hours for the actual output SH)* Standard rate per hour $\boldsymbol{S R}$
- =(2000 h- 2100 h) Rs. 6 per hour
- = \$600 F. variance

Labor Efficiency Variance- Causes

